Natural Language Processing (~1990)

1) Spam filtering
2) Query Completion
3) Document ranking
4) Topic extraction

Represent a text

1) Frequency counting
dimension $=$ \#words in your text

x $x$$\|$	0
x	00

2) N -grams
n-yean is just a length n sequame from the lead - predict next word

- decrypting substitution Cyphers
- Filling in missing data

Smoothing: "The rower of absolute discounting"

Thidelen Marker Models
Marker Chain:
States: $F_{1, \ldots} S_{1}, \cdots, S_{n}$
Transition $P M=\left[P_{i j}\right]_{i, j=1}^{n}$
probability $\quad P_{i j}$ is the probability $S_{i} \rightarrow S_{j}$
z_{t} state of time t

$$
\begin{aligned}
& \mathbb{P}\left(z_{T}=s \mid z_{T-1}, \cdots, z_{1}\right)=\mathbb{P}\left(z_{T}=s \mid z_{T-1}\right) \\
\pi^{t}= & {\left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right] }
\end{aligned}
$$

$\pi \sim$ states, then $\pi_{t}=P^{t} \pi$
$\pi^{*}=\lim _{t \rightarrow \infty} \pi_{t}$ exists and is unique independent of π_{0}
π^{*} is limiting/equilibinum / stationary distribution
Chider Markov Model:
States: S_{1}, \cdots, S_{n}
each state has "emission" distielution P_{i}
pave some variable x_{1}, \cdots, x_{k}
Goal: Estimate $P_{i} P_{i}$
ZM algorithm

Markov Chain Monte Carlo (MCMC)
Idea: Model the distribution we want to estimate on the limiting distribution of MC. simulate the Marker Chain.

Subtituition Cyphers
\sum Alphabet
Soul: find σ^{-1}

$$
\sigma \in S_{|\Sigma|}
$$

1) $M=$ bigram conditional probability matron $=\left[P_{i j}\right]$ for English

$$
\begin{aligned}
w & \in S_{|\Sigma|} \\
\alpha(w) & =\sum_{x=1}^{|| |-1} \log \left(P_{w\left(T_{k}\right) \cdot w\left(T_{k+1}\right)}\right)
\end{aligned}
$$

1) Pick fore a romelom $w \in S_{\mid z 1}$
2) loop until for $N \sim(2000)$
3) Pick $\tau \in S_{|\Sigma|}$ a transposition
4) if $p l(w, \tau)>p l(w)$

$$
\omega=\omega_{0} \tau
$$

else with probability $\frac{p l\left(w_{0} \tau\right)}{\rho l(w)}$

$$
w=w \cdot \tau
$$

Gibbs Sampling
D_{1}, \cdots, D_{N} documents
K topics
topic is a set of woids and a distribution over the words
θ_{i} is a clistribution on T_{1}, \cdots, T_{k}
$\left(\theta_{i}\right)_{j}$ upresents the porportion of D_{i} is T_{j}
) Assign each word in each document a topic using θi 's
2) For each document D, word $w \in D$

$$
\begin{aligned}
& P(T \mid D)=\frac{\text { \#wods in } D \text { ansanged to } T}{\# \text { words in } D} \\
& P(\omega \mid T)=\frac{\# w \text { was assigned to } T}{\# \text { words in } T} \\
& P(T \mid D) \cdot P(\omega \mid T)
\end{aligned}
$$

